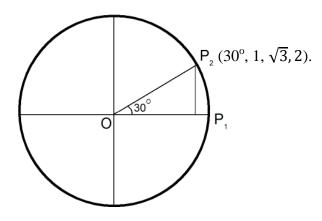
MATHEMATICS PROJECT

CLASS: 10

TOPIC: TO PREPARE TRIGONOMETRIC CHART FOR sin, cos and tan FUNCTIONS OF ANY ANGLE


OBJECTIVE: To express the trigonometric position of a point and determine the sin, cos and tan functions of this position of the point.

MATERIALS REQUIRED:

- 1. Compass box
- 2. Practical workbook
- 3. Thread
- 4. Scale
- 5. Sketch pen
- 6. 2 mm graph papers

PROCEDURE:

- 1. Draw a circle of 2 cm radius on the 2 mm graph paper.
- 2. With O as the centre, draw $\angle P_1 O P_2 = 30^\circ$ with the help of pencil, compass and ruler.
- 3. There are two system of co-ordinates to express the position of a point. They are known as polar co-ordinate and Cartesian co-ordinates. The trigonometric co-ordinates are expressed by combining both the systems and written in the order as (θ, Y, X, R) .
- 4. Drop a perpendicular P_2M' on OP_1 .
- 5. Measure P_2M' and OP_2 .
- 6. You will find $P_2M' = 1$ cm and $OP_2 = 2$ cm. Use Pythagoras' theorem to calculate $OM' = \sqrt{3}$ cm.
- 7. Plot the co-ordinates of P_2 as $(30^\circ, 1, \sqrt{3}, 2)$.
- 8. Similarly repeat the steps from 1 to 5 for $\angle P_1OP_3 = 45^o$, $\angle P_1OP_4 = 60^o$, $\angle P_1OP_5 = 90^o$ and plot the co-ordinates of P_3 , P_4 , P_5 .
- 9. For each of these angles drawn and co-ordinates plotted draw a separate circle to illustrate.
- 10. Diagram should be neat and clearly labeled.

RESULT:

Trigonometric values for different angles making use of the co-ordinates are determined and tabulated.

Trigonometric co-ordinates points	Angle (θ)	Perpendicular (P) Y	Base (B) X	Hypotenuse (H) (also radius	$\sin\theta = \frac{P}{H}$	$\cos\theta = \frac{B}{H}$	$\tan\theta = \frac{P}{B}$
_				R)			
P_1	$0_{\rm O}$						
P_2	30 ^o	1	$\sqrt{3}$	2			
P_3	45 ⁰						
P_4	60 ⁰						
P_5	90 ⁰						

LAST DATE OF SUBMISSION OF PROJECT: 16TH JUNE, 2014